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Abstract

The local tissue microenvironment “niche” is composed of cellular and non-cellular components and plays 
an important role in regulating cell behaviour, during embryogenesis, and in physiologic and pathologic contexts 
including cancer. The cellular component is formed of specialized cell types endowed for the biological functions 
of the organ and tissues. The non-cellular component of the niche comprises the extracellular matrix (ECM) which 
functions not only as a scaffold for the cellular component maintaining tissue morphology, but dynamically influences 
fundamental aspects of cell behaviour. Matricellular proteins are a group of extracellular matrix (ECM) molecules 
that are not components of the structural scaffold of the ECM but serve as cell regulators and modulators of cellular 
behaviour and signaling. Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the matricellular proteins 
and is implicated in myriad physiological and pathological conditions characterized by extensive remodelling and 
plasticity. The role of SPARC in cancer is being increasingly recognized as it plays multi-faceted contextual roles 
depending on the cancer type, cell of origin and the surrounding milieu. The role of SPARC in the multistep cascades 
of carcinogenesis, cancer progression and metastasis has been studied retrospectively in human tumors, preclinical 
models using cell lines and models of oncogene-driven and carcinogen-induced cancers. Below we review several 
of these tumor types where SPARC biology has been evaluated.

Keywords: Niche; Extracellular matrix; SPARC; Matricellular
proteins

Introduction
Matricellular proteins are a group of Extracellular Matrix (ECM) 

molecules that are not components of the structural scaffold of the ECM 
but serve as cell regulators and modulators of cellular behaviour and 
signaling during embryonic development, cell differentiation myriad 
physiological and pathological contexts[1-5] (Figure 1). The diverse 
group of matricellular proteins includes the glycoproteins secreted 
protein acidic and rich in cysteine (SPARC/osteonectin/BM40), 
thrombospondin (TSP), tenascin C (TNC), osteopontin (OPN) and 
periostin (POSTN) [2]. In this review, we will focus on SPARC. Initially 
discovered as a bone matrix and a basement membrane protein, the 
role of SPARC in tissue development and homeostasis was rapidly 
noted (reviewed in [1,4]). In vivo, SPARC has been shown to regulate 
collagen deposition, fibrillogenesis and assembly and hence it has 
been implicated in myriad physiological and pathological conditions 
characterized by extensive remodelling and plasticity where it functions 

to maintain tissue homeostasis (summarized in [3,4,6-11]). The role 
of SPARC in tissue homeostasis is exemplified by the phenotypes of 
SPARC-deficient mice as cataract formation and osteopenia, decreased 
size and tensile strength of dermal collagen fibers, and increased 
deposition of adipose tissue [12,13]. Other phenotypes, evolved when 
these mice were challenged as accelerated wound healing, angiogenesis, 
increased cardiac rupture, dysfunction and mortality in response to 
myocardial infarction, increased lung fibrosis and glomerulosclerosis. 
Reported phenotypes were related to defects of fibroblast differentiation 
and plasticity and increased leukocyte recruitment [3-5,7-11,14-17].

The role of SPARC in cancer is being increasingly recognized. 
SPARC plays multi-faceted contextual roles depending on the cancer 
type and whether it is produced by cancer cells or surrounding stromal 
cells in a given milieu (summarized in [5,14,15,18-20]). In many cases, 
cancer cells down-modulate SPARC whereas disease progression is 
associated with high level of stromal SPARC (summarized in [19]). 
The role of SPARC in the multistep cascades of carcinogenesis, cancer 
progression and metastasis has been studied retrospectively in human 
tumors, preclinical models using cell lines and models of oncogene-

Figure 1: Extracellular matrix and matricellular proteins as modulators of cell 
interactions with its environment.
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driven and carcinogen-induced cancers. Below we review several of 
these tumor types where SPARC biology has been evaluated.

Prostate Cancer
Two studies were reported on the role of SPARC on autochthonous 

oncogene-driven prostate cancer in SP-/- mice crossed with Transgenic 
Adenocarcinoma Of The Mouse Prostate (TRAMP)  [20,21]. Crossing 
TRAMP mice with SPARC-null mice and generation of T+/SP+/+ and 
T+/SP−/− mice allowed the study of the effect of SPARC on early phases 
of transformation and carcinogenesis  [20]. When T+/SP−/− mice with a 
C57Bl/6 genetic background were compared to their T+/SP+/+ controls, 
loss of SPARC was associated with accelerated cancer development, 
progression, and metastasis [20]. On the other hand, when T+/SP−/− 
mice in a mixed C57Bl/6/129 genetic background were compared to 
T+/SP+/− (haploid insufficient) mice, no significant difference in tumor 
incidence, take and metastasis albeit a greater proportion of T+/SP−/− 
mice developed a more severe grade of prostate cancer [21]. The effects 
of SPARC liming prostate cancer progression was mediated through 
multiple effects on cancer cells and the surrounding stroma [20]. 
On cancer cells, SPARC inhibited cell proliferation and induced cell 
cycle arrest at G1-S phase. Using murine TRAMP cell lines to form 
SC tumor implants in SP+/+ and SP−/− mice, and examining prostate 
tumors form T+/SP+/+ and T+/SP−/− [20], we found that host SPARC 
restrains tumor growth, and this is associated with enhanced maturity 
of fibrillar collagen at the tumor periphery, decreased angiogenesis 
and proteolytic activity. The suppressive effects of SPARC on prostate 
cancer reported herein may, in part, be attributed to its negative effect 
on the constituents of the tumor microenvironment. Moreover, we 
observed enhanced proteolytic activity in the T+/SP−/− prostate tumors 
suggesting a role in increased tumor angiogenesis by increasing the 
bioavailability of angiogenic growth factors and pro-angiogenic 
inflammatory cytokines such as VEGF (and bFGF), IL-6, and MCP-1, as 
well as making the ECM more permissive for neo-vascular growth and 
inflammatory cell influx [20]. The anti-proliferative effect of SPARC on 
human and murine prostate cancer cells in vitro mirrored it’s in vivo 
effects [20]. Interestingly, exogenous and/or overexpression of SPARC 
inhibited prostate cancer cell invasiveness. Paradoxically, when used as 
a chemo-attractant, SPARC enhanced the invasive properties of many 
prostate carcinoma cell lines, and induced matrix metalloproteinase 
activity in vitro [20,22,23].

The effect of prostate stromal SPARC was recently studied using 
human prostate cancer tissue microarrays.  Shin and colleague  [24] 
reported higher expression of SPARC protein in normal human 
prostate tissue compared with cancerous tissues with higher expression 
in the stromal compartment compared to the cancerous compartment. 
They also reported higher secretion of SPARC protein from normal 
Prostate-Derived Stromal Cell (PrSC) compared to PCa-derived 
Stromal Cell (PCaSC) and prostate cancer cells. Mechanistically, using 
co-cultures of established human prostate cancer cell lines with normal 
and cancer associated stromal cells Shin and colleagues revealed that 
SPARC produced by normal prostate stromal cells exerted inhibitory 
effect on prostate cancer cell proliferation and AKT phosphorylation 
more than that of PCaSC. Immunoprecipitation studies revealed 
interaction of SPARC and integrin β1 in PCa cells which was further 
shown to be essential for the inhibitory effect of SPARC on prostate 
cancer cell proliferation and migration.

Because the TRAMP and other murine models do not produce bone 
metastasis, they were not useful for testing the impact of SPARC on 

prostate cancer skeletal metastases. In vitro models has been developed 
using SPARC protein, bones and/or bone extracts from SP-/- and SP+/+ 
mice with human cell lines in vitro to mechanistically decipher the 
role of SPARC in the propensity of prostate cancer to metastasize to 
bones. The increased migration of prostate cancer cells was attributed 
to bone-SPARC activating tumor αvβ3 and αvβ5-VEGF axis [25]. In 
addition, metastatic prostate cancer cells expressed a secreted isoform 
of ErbB3 (p45-sErbB3), and induced SPARC expression and secretion 
by bone marrow osteoblastic lineage with subsequent increase in 
cancer cell invasiveness, that was blocked by neutralizing antibodies 
to SPARC [23]. Finally, immunohistochemistry of human and murine 
tumors demonstrated that both normal prostate epithelial cells and 
primary prostate carcinomas express low to moderate levels of SPARC, 
however, its expression is increased in metastatic foci [20,26-28].

A growing body of evidence suggests that SPARC exerts differential 
roles on prostate cancer cells in the bone microenvironment  [20,23,25-
27].The effect of bone matrix-SPARC was further investigated using 
SP-/- and SP+/+ murine osteoblasts in vitro to represent the complex, 
crosslinked, and mineralized bone matrix [29] and was found to 
attenuate the growth of bone metastatic prostate cancer PC-3 cells, 
and increased their sensitivity to ionizing radiation [29]. The dynamic 
changes in the morphology and growth of PC-3 cells on SP-/- and 
SP+/+ bone matrices suggests a complex series of changes in collagen 
topography preceding the observed differences [29]. In support of this 
is the enhanced osteolysis and enhanced growth of murine prostate 
cancer cells injected intra-osseously [30] suggesting that the proteolysis 
of SPARC could result in a more favorable microenvironment for 
metastatic cells. Consistently, cleavage of SPARC by metalloproteinases 
and cathepsin K [31,32] has been shown to release proteolytic fragments 
exerting distinct biological properties from those of the intact protein 
[33]. Metastatic prostate cancer cells have been shown to compete 
with hematopoietic stem cells for interaction with the skeletal niche, 
suggesting that bone matrix-SPARC could influence this interaction 
by affecting remodeling of the niche as well as the differentiation, fate 
commitment, and survival of niche cells [29,30,34-37].

Indeed the differential roles of SPARC in human prostate cancer 
progression and metastasis are still complex and controversial. The 
complexity is exemplified by the fact that gene expression profiling 
data may not reflect the exact pathological changes in prostate cancer 
due to technical variations in obtaining, transport and processing the 
samples for analysis. Most importantly, tumor heterogeneity adds 
an additional layer of complexity to interpretation of microarray 
analysis (summarized in [38]). These were reflected in results from a 
study by Gregg et al.  [39] showing that the gene profiles from micro-
dissected tumor epithelial cells and surrounding stroma where SPARC 
expression was significantly up-regulated in the juxta-tumoral stromal 
compartment compared to adjacent prostate cancerous tissues. In 
contrast, the transcriptome of laser capture-micro-dissected prostate 
tumor cells with poorly differentiated (PD) and with well differentiated 
(WD) phenotype were analyzed for gene expression and biochemical 
pathway alterations [40] and a significant association between SPARC 
expression (transcript and protein) and aggressive prostate cancer 
was reported. Therefore, Derosa and colleagues suggested SPARC as 
a potential early marker of less favorable outcome. The discordant 
reports on SPARC expression in clinical samples and reported 
functions in preclinical model systems beget more comprehensive 
clinical study designs, data mining and development of preclinical 
model systems that could really mimic in vivo scenarios of the human 
disease reflecting tumor heterogeneity, different stages and grades.
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Urothelial Cancer of the Urinary Bladder
We have recently reported a comprehensive study to distinguish 

the role of tumor- versus host-SPARC during the evolution of bladder 
cancer [19]. SPARC protein expression was shown to have differential 
compartmentalization in human and murine bladder cancers with 
a decrease in the cancerous compartment as a function of disease 
progression while being concomitantly expressed in the tumor 
associated stroma [19].

To study the differential roles of SPARC in the early phases of 
urothelial transformation that are difficult to assess in humans, we 
introduced a chemical carcinogen, BBN in drinking water to SP-/- and 
SP+/+ mice (Figure 2). This model recapitulates human bladder cancer 
and the induced rodent tumors exhibit similarity of gene expression 
to the human disease [19]. The ensuing urothelial pathology was 
associated with progressive generation of ROS and markers of DNA, 
protein and lipid oxidative damage; a scenario that was accelerated in 
SP-/- mice [19].

The expression of markers of oxidative damage as nicotinamide 
N-methyltransferase (NNMT) and sulfiredoxin; was augmented in 
SP-/- bladder along with increased activation of signaling cascades that 
converge in the activation of AP-1 and NFκB, the major orchestrators 
of inflammation, carcinogenesis, invasiveness and metastasis [41-43].

In an attempt to unravel the role of stromal- SPARC in the evolution 
of carcinogen-induced urothelial cancer, we first demonstrated the 
kinetics of SPARC protein expression during differentiation of primary 
fibroblasts and macrophages. We found that SPARC expression 
increased during early differentiation, then decreased to basal levels 
in macrophages but remained steady in differentiated fibroblasts. 
Heterotypic co-cultures of normal and cancerous urothelial cells with 
normal and tumor associated stromal cells indicated that SPARC 
inhibited the acquisition inflammatory secretory phenotype of Tumor 
Associated Macrophages (TAMs) and Cancer Associated Fibroblasts 
(CAFs) through inhibition of the activation of NFκB and AP-1 
with subsequent decrease in their secreted cytokines and cancer cell 
invasiveness. The panel of secreted factors from CAF-cancer cell co-
cultures revealed that TGF-β and SDF1 were exclusively produced by 
CAFs and were significantly downregulated by SPARC. These findings 
suggested that SPARC inhibited the inflammatory feed-forward loop 
in cancer cells, TAMs, and CAFs through secreted inflammasomes. 

On the one hand, inflammasomes sustain cancer cell proliferation, 
invasiveness, angiogenesis, and metastasis while on the other hand 
they play a critical role in recruitment and differentiation of stromal 
cells. The kinetics of SPARC expression in cancerous and stromal cells 
implicated SPARC in the intricate tightly-regulated programs of cellular 
recruitment, proliferation, differentiation and de-differentiation. These 
observations are supported by earlier studies that associated SPARC 
with differentiation of bone marrow mesenchymal stem/progenitor 
cells as osteoblasts, adipocytes, fibroblasts, myeloid cells and neuronal 
progenitors [4,12,13,44,45].

Gastrointestinal Cancers
Intestinal adenomas

The involvement of SPARC in oncogene-driven intestinal 
adenomas was studied by crossing SP-/- with ApcMin/+ mice generating 
cohorts of ApcMin/+SP+/+ and ApcMin/+SP−/− mice [46] and comparing 
the ensuing adenomas of these crosses. SPARC exhibited a 2-3 
upregulation in adenomas at both the transcript and protein levels 
compared to the normal epithelium. SPARC deficiency resulted in 
decreased number of adenomas in both the small and large intestines 
with no difference in their size, distribution, malignant transformation 
to adenocarcinomas or extra-intestinal malignancies. The phenotype 
observed was attributed to the effect of SPARC on enterocyte migration 
along the crypt–villus axis.

Colorectal cancer (CRC)

SPARC is been considered a tumor suppressor in CRC according 
to the evidence from experimental cell models, SP-/- mice and clinical 
cohort studies [47]. In addition, exogenous SPARC, in combination 
with chemotherapy, was highly efficacious in achieving tumor 
regression in animal xenografts  [47]. Genome-wide analysis revealed 
Sparc promoter hypermethylation in advanced therapy resistant CRC 
cells and tumors, and identified specific methylated CpG islands in 
the promoter. SPARC expression was restored by demethylating 
agent 5-Aza-dideoxycytidine, leading to improved sensitivity to 
chemotherapy [48-50]. Recently, SPARC expression was assessed in 
approximately 1120 normal and paired CRCs stages I-IV in tissue 
microarrays along with FOXP3. SPARC expression was significantly 
greater in CRC than normal colon with high SPARC expression 
correlated with good disease outcome and less adjuvant chemotherapy  
[51].

In a chemical carcinogenesis model of colorectal cancer using SP-/- 
mice and their SP+/+ counterparts  [52], Aoi et al reported the protective 
function of exercise-induced SPARC released from muscle tissue into 
the circulation significantly reducing the number of aberrant crypt foci 
(ACF) and crypts (AC) in the colons of SP+/+ mice, but not in SP-/- mice. 
The injection of low- or high-dose recombinant SPARC also prevented 
the formation of chemically induced ACF and AC in the colons of 
SP+/+ mice. Mechanistic studies indicated that both transcriptional 
and translational mechanisms potentiate the production and 
secretion of SPARC protein. This study suggested that SPARC can 
directly induce the apoptosis of colon cancer cells and inhibit their 
proliferation, and may indirectly prevent tumorigenesis by regulating 
the microenvironment in the colonic tissue; however such possibilities 
were not investigated [52,53].

Pancreatic cancer

In pancreatic cancer aberrant methylation of Sparc promoter has 
been reported in tumor tissues from patients with pancreatic cancer. 

Figure 2: Chemical carcinogenesis model of bladder cancer.
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Gene expression profiling and confirmatory RT-PCR demonstrated 
that SPARC mRNA was expressed in non-neoplastic pancreatic ductal 
epithelial cells, but was not expressed in a majority of pancreatic 
cancer cell lines. SPARC protein was overexpressed in the stromal 
fibroblasts immediately adjacent to the neoplastic epithelium in 
primary pancreatic cancers, but rarely expressed in the cancers 
themselves [54]. Methylation of the Sparc CpG region 2 was linked 
to increased tumor size and tobacco smoke and alcohol exposure, 
whereas methylation of CpG Region 2 was more encountered in early 
pancreatic carcinogenesis  [43]. Saprc methylation has been recently 
detected, with high sensitivity and accuracy, though with less frequency 
in retrospective analysis of fine percutaneous fine needle pancreatic 
biopsies [55]. The silencing of SPARC gene expression could be 
reversed by 5-Aza-2′deoxycytidine in pancreatic cancer [43,54,56]. A 
recent study reported that treatment of pancreatic cancer cell lines with 
novel curcumin analogues EF31 and UBS109 as demethylating agents 
resulted in significantly higher inhibition of proliferation and cytosine 
methylation and was associated with re-expression of silenced SPARC, 
along with p16, and E-cadherin. Mechanistically, the demethylating 
effect of EF31 and UBS109 was mediated through inhibition of HSP-90 
and NF-κB-DNA methyltransferase-1 (DNMT-1) axis  [57]. Primary 
fibroblasts derived from pancreatic cancer strongly expressed SPARC 
mRNA and secreted SPARC protein into the conditioned media, 
and treatment of pancreatic cancer cells with exogenous SPARC 
resulted in growth suppression. SPARC expression in fibroblasts from 
noncancerous pancreatic tissue was augmented by co-culture with 
pancreatic cancer cells [43,54,56,58]. However, SPARC expression in 
peritumoral stromal fibroblasts was increased and correlated with poor 
patient survival. SPARC expressed by human pancreatic stellate cells 
(hPSCs) exerted a paracrine effect increasing invasion of pancreatic 
cancer cells [59]. In contrast, another study [60] reported that 
knockdown of SPARC expression in pancreatic cancer cells inhibited 
in vitro and in vivo growth and metastases. Experimental mouse models 
indicate host SPARC is an inhibitor of tumor growth and metastasis. 
Murine pancreatic adenocarcinoma cells injected subcutaneously grew 
significantly faster and attained larger sizes in SP-/- mice [61]. Lack of 
endogenous (host) SPARC resulted in decreased collagen deposition, 
alterations in the distribution of tumor-infiltrating macrophages, and 
decreased tumor cell apoptosis. Although there was no difference in 
microvessel density of tumors from SP-/- or SP+/+ mice, tumors grown 
in SP-/- had a lower percentage of mature blood vessels expressing 
the pericyte marker α-smooth muscle actin. Consistently, orthotopic 
pancreatic tumors produced more metastasis in SP-/- mice [62] that 
was mediated in part through MMP-9 impacting ECM deposition and 
angiogenesis in the tumor microenvironment. Another explanation is 
that the absence of stromal-derived SPARC, aberrant TGFβ levels and 
bioavailability accelerated tumor growth and metastasis in SP-/- mice 
with increased vascular endothelial cell permeability, inflammation 
and fibrosis  [6,63,64].

Esophageal cancer

Alteration in SPARC expression has been observed in esophageal 
squamous cell carcinoma and adenocarcinoma [65-68]. Progressive 
increase in SPARC expression from normal and premalignant to 
malignant lesions in esophageal cancer was demonstrated [65,67,68] 
suggesting the utility of SPARC screening for diagnosis of occult 
malignancies in patients with Barrets esophagus. Several investigators 
have shown that SPARC levels may have prognostic significance 
in esophageal cancer [65,66] using genome-wide gene expression 
profiling of resected esophageal cancers, indicating that patients with 
low SPARC had a significant improvement in outcome. Another study 

revealed that SPARC was not detected in normal esophageal mucosa, 
but was expressed in stromal fibroblasts in 84.6% of esophageal SCC 
cases and in cancer cells in 7.8% of esophageal SCC cases [69]. While 
the expression of SPARC alone was not significantly correlated with 
survival patients with elevated levels of laminin-5γ2 chain and SPARC 
expressions had a poorer prognosis [69]. 

Gastric cancer

 Human gastric cancer cell lines expressed variable levels of 
SPARC. Down-regulation of SPARC in high expressing cell lines 
inhibited their invasion and growth [70]. The expression of SPARC 
protein was mainly in the stromal cells surrounding the gastric cancer 
tissues, and was significantly negatively correlated with the expression 
of VEGF, vascular density and in tumor cell proliferation [71,72]. 
Conversely, SPARC transcript and protein levels were found to be up-
regulated in tissues of diffuse-type gastric cancer and intestinal-type 
gastric cancer patients and were correlated with invasiveness and poor 
prognosis [73,74]. cDNA microarray identified SPARC as being up-
regulated in primary gastric carcinoma tissue and the corresponding 
lymph node metastasis compared with the non-neoplastic mucosa. 
However, immunostaining of SPARC in these tumors revealed 
increased frequency and intensity of SPARC expression in fibroblasts 
rather than in tumor cells. Recently, the associations between SNPs in 
the SPARC 3’-untranslated region (UTR) and time to gastric cancer 
recurrence findings revealed that patients carrying at least one G allele 
of the SPARC rs1059829 polymorphism (GG, AG) showed a longer 
median time to tumor recurrence (TTR) of 3.7 years compared with 
2.1 years TTR for patients with AA; whereas, patients harboring the 
G-A-A haplotype had the highest risk of tumor recurrence [75].

Hepatocellular carcinoma

 The methylation status of Sparc was analyzed in one HCC cell line 
(SMMC-7721) and 60 pairs of HCC and corresponding non-tumorous 
tissues [76].In the SMMC-7721 cell line, the loss of SPARC expression 
was correlated with the aberrant methylation that was reversed by the 
demethylating agent 5-aza-2’-deoxycytidine. Methylation frequency of 
Sparc in HCC tissues was significantly higher than corresponding non-
tumorous tissues and was correlated with down-regulation of SPARC 
mRNA expression, pathological classification and poorer overall 
survival [76].

Gynecologic Cancers
Ovarian cancer

 Although SPARC was found abundantly expressed by stroma cells 
in advanced phases of human ovarian cancer, evidence points to SPARC 
as a protein that tries to normalize the microenvironment to counter 
tumor growth [14]. Particularly, SPARC normalizes ovarian cancer cell 
microenvironment by reducing inflammation [77,78] as evidenced by 
molecular analysis of the ascitic fluid from SP-/- mice implanted with 
ovarian cancer cells, containing less IL-6, MCP-1, VEGF and MMPs 
than SP+/+ counterparts. In vitro and in vivo studies have identified 
SPARC as a novel ovarian cancer suppressor (Figure 3) that functions 
primarily by virtue of its de-adhesive ability  [18], anti-proliferative 
and pro-apoptotic effects [14,18,78,79]. These effects have attributed 
to the effects of SPARC inhibiting integrin-mediated and growth 
factor-mediated survival signaling pathways [14,78,79]. In addition, 
SPARC inhibited ovarian cancer cell adhesion to various ECM proteins 
enriched in the peritoneal microenvironment as collagen I,collagen IV, 
fibronectin, laminin and vitronectin as well as peritoneal mesothelial 
cells through an axis that involved β1 and β3 integrins-MMPs-VEGF-
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VEGFR2 [14,18,79]. SPARC also inhibited ovarian cancer cell matrix 
and transmesothelial invasiveness through inhibition of LPA-induced 
and cytokine-mediated inflammation and survival signaling  [14,77-79]. 
Earlier reports demonstrated that SPARC expression in ovarian cancer 
cells is inversely correlated with the degree of malignancy [80-83]. In 
agreement with these findings, the decreased expression of SPARC in 
ovarian tumors is attributed to the aberrant hypermethylation of the 
Sparc promoter [84]. We have also reported the ability of SPARC to 
modulate ovarian cancer cell interaction with the ECM components, 
the production and the activity of specific growth factors, cytokines, 
proteases, and bioactive lipids  [14,  77-79]. Moreover, we found that 
in the immunocompetent SP-/- mice, the enhanced peritoneal ovarian 
carcinomatosis was concomitant with recruitment of macrophages 
and was positively correlated with the augmented levels and biological 
activity of ascitic fluid and its constituents, namely, VEGF, MMPs, 
MCP-1, IL-6, prostanoids, and bioactive lipids  [14,77-79]. The effect of 
tumor-SPARC in modulating the ovarian cancer micro-environment, 
was studied using in vitro systems to dissect the molecular mechanisms 
of the interactions between human ovarian cancer cells, mesothelial 
cells, and macrophages [77,78]. Restoration of SPARC expression in 
ovarian cancer cells disrupted the interplay between these key players, 
resulting in attenuated macrophage recruitment and expression of 
known markers of inflammation [14,77-79]. Forced expression of 
SPARC decreased growth of platinum-resistant ovarian cancer cell 
lines in vitro and increased their sensitivity to chemotherapy in vitro 
and in vivo [85].

Cervical cancer

A genome-wide screening study for identification of 
hypermethylated genes in Squamous Intraepithelial Lesions (SIL) and 
Invasive Cervical Cancer (ICC) revealed that SPARC exhibited highest 
frequency of aberrant methylation in ICC specimens [86]. Consistently, 
another study performed in normal cervix, low-grade (L)SIL, high-
grade (H)SIL, adenocarcinomas and squamous cell cervical cancers, 
and in corresponding cervical scrapings revealed that the methylation 
frequency of SPARC increased with severity of the underlying cervical 
lesion. Methylation ratios in scrapings reflected methylation status 
of the underlying lesions [87,88]. Another study using a different 
technology confirmed methylation of Sparc CpG islands that was 
highly correlated with the incidence of invasive cervical cancer [89]. 

Whereas in a recent study using isolated and established high and low 
invasive subclones from human cervical cancer cell lines HeLa and 
SiHa [90], SPARC was over-expressed in the highly invasive subclones  
[90]. Knockdown of SPARC inhibited cell proliferation, and induced 
cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, 
caused cell apoptosis and inhibited cell invasion and metastasis [90].

Endometrial cancer

A significant down-regulation of SPARC mRNA and protein 
expression was observed in endometrial tumor tissues, and was 
attributed to aberrant hypermethylation of its CpG-rich region. The 
down-regulation of the SPARC gene in endometrial tumors, formed 
by at least 80% of epithelial tumor cells, contrasted with a frequent 
overexpression of SPARC protein, with strong immunoreactivity in 
the surrounding stromal tissues [91].

Breast Cancer
The role of SPARC in breast cancer initiation, progression and 

metastasis is another example of its context dependent expression 
and function that was made challenging confounded by the multiple 
subtypes of breast cancer. The role of SPARC in oncogene-driven 
breast cancer was investigated by Wong et al. [21] using murine 
mammary tumor virus-polyoma middle T (MMTV-PyMT) crossed 
with SP-/- mice. Examining in tumor development in SPARC null and 
heterozygous mice revealed that loss of SPARC had no significant 
effects on tumor initiation, progression, angiogenesis ECM or 
metastasis. Similar to the observation by the same group in oncogene-
driven prostate cancer model [21], the insignificant difference may be 
attributed to SPARC gene dosage. In contrast, increased expression 
of SPARC is found in malignant breast tumors and is considered as 
a marker of poor prognosis and recurrence [92-97]. Studies utilizing 
human breast cancer cell line models in vitro or injected in nude mice 
appear to be conflicting due to variations in the models used. For 
example, forced expression of SPARC by adenoviral vector [98] or 
inducible Tet-On system [99] did not affect MDA-231 cell proliferation, 
apoptosis, migration, cell aggregation, or protease cleavage of collagen 
IV but inhibited in vitro matrix invasion and in vivo metastasis that was 
attributed to reduced tumor cell-platelet aggregation and suggesting 
that the acquired resistance to the SPARC inhibitory effects in SPARC-
expressing MDA-231, has been acquired as a selective pressure, as it 
occurs for TGF-β.

Models utilizing murine 4T1 breast cancer cell line in SP-/- mice 
backcrossed onto a BALB/c genetic background, reported smaller 
mammary tumors in SP-/- mice, accompanied by an enhanced 
infiltration of inflammatory leukocytes further highlighting the role 
of host-derived SPARC influencing the growth of these tumors. The 
differential effects are likely due to the immediate tumor environment, 
and not to the tumor cells themselves  [16,  100,101]. Up-modulating 
SPARC expression in 4T1 cells using a retroviral vector reduced 
tumor growth and reduced metastasis, a phenotype that was related 
to the SPARC anti-proliferative effect rather than to migration 
induced by SPARC from the stroma as demonstrated by bone marrow 
transplantation performed to dissect the role of tumor- and stroma-
derived SPARC [4].

Skin Cancer and Melanoma
The effect of SPARC on spontaneous development of skin cancer 

was investigated by crossing SP-/- mice with SKH-1 hairless mice to 
generate hairless SP-/- mice and exposed them UV-irradiation [102]. 
Following 23 weeks of exposure to UVB, tumor development in the 

Figure 3: Mechanism of SPARC involvement in ovarian cancer.
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wild-type mice developed severe extensive squamous cell carcinomas 
whereas SP-/- mice were strikingly tumor-resistant, developing less 
than one small non-cancerous papilloma per mouse. SPARC was 
undetectable immunohistochemically in skin from the non-irradiated 
control group yet was present in relatively high quantities in the basal 
and superficial areas of the tumor mass.

In melanoma, SPARC expression has been reported to increase 
with tumor progression, and its expression was shown to be a marker 
for poor prognosis [103]. SPARC knockdown in melanoma cells 
led to the complete loss of their in vivo tumorigenic growth in nude 
mice [104,105] through a mechanism involving the activation of 
polymorphonuclear cell–anti-tumor activity. Importantly, SPARC 
expression in melanoma cells has been associated with the acquisition 
of mesenchymal characteristics with reduced E-cadherin expression. 
However the in vivo tumorigenicity and invasiveness were of melanoma 
cells injected in nude mice were dependent on tumor cell SPARC and 
metalloproteinase activity not fibroblast SPARC  [103,106-112].

Lung Cancer
The expression of SPARC in human Non-Small Cell Lung Cancer 

(NSCLC) tissues was significantly lost in the cancerous compartment, 
whereas substantial production of SPARC by stromal fibroblasts was 
noted [113]. Stromal SPARC correlated with tumor necrosis, nodal 
metastasis, markers of and poor prognosis [113]. Loss of SPARC 
expression was reported in 60% of lung cancer cell lines and primary 
tumors due to promote rmethylation [114], while nonmalignant lung 
tissues had very low rates of Sparc promoter methylation. In lung 
adenocarcinomas, Sparc promoter methylation correlated with poor 
prognosis [114]. SPARC protein expression was lost in the cancerous 
compartment, week in bronchial epithelium and strong in juxtatumoral 
stromal tissues [114]. Interestingly, Sparc promoter has been found to 
be methylated in lung cancer cell lines and tissue by a mechanism that 
involved activation of DNMT1 by Cox2 [115].

Neurologic Malignancies
Meningiomas

The expression of SPARC in benign, noninvasive primary 
meningiomas was compared with its expression in invasive, aggressive, 
primary and recurrent meningiomas. SPARC was not expressed in 
benign, noninvasive tumors, but was highly expressed in invasive 
tumors, regardless of the grade suggesting that SPARC is a potential 
diagnostic and predictive marker of invasive meningiomas [116]. 
The relationship of basement membrane intactness and SPARC 
protein expression at the meningioma-brain border was examined in 
brain-invasive meningiomas (meningothelial meningiomas grade I, 
atypical grade II, and anaplastic grade III tumors) and non-invasive 
grade I meningothelial meningiomas [117]. SPARC was expressed 
at the tumor-brain interface of invasive meningiomas, in spindle-
shaped tumor cells; with no significant difference across tumor 
grades. In this study, SPARC+ spindle cells inversely correlated with 
basement membrane proteins as epithelial membrane antigen (EMA), 
collagen IV and glial fibrillary acidic protein (GFAP). However, the 
destruction of the basement membrane and appearance of SPARC+ 
spindle cells were not coincident during the course of brain invasion 
by meningiomas. Consistently, SPARC expression was more frequent 
in atypical and in anaplastic than in benign meningiomas and was 
significantly associated with tumor recurrence [118]. The high SPARC 
expression scores (both frequency and intensity) were predominantly 
identified in meningothelial, fibrous and chordoid meningiomas; 

whereas low SPARC expression scores were spotted in secretory 
and psammomatous meningiomas. High SPARC expression was 
significantly associated with poor patient survival [118]. In agreement 
of the pro-invasive effect of SPARC on meningiomas, SPARC has been 
found to be negatively regulated by meningioma tumor suppressor 
CD13/aminopeptidase N (APN) whose expression and enzymatic 
function is reduced in aggressive meningiomas [119].

Glioma

SPARC expression is increased in infiltrating gliomas at the brain-
tumor interface, suggesting that SPARC may be involved in tumor 
infiltration and aggressive behavior [120-122]. Comprehensive gene 
expression profiling data analysis of advanced glioma, Glioblastoma 
Multiforme (GBM) patient samples [123] identified the prognostic 
and predictive utility of SPARC along with doublecortex (DCX), 
and Semaphorin3B. The concordance of higher values of these three 
genes together seems to associate with poorer survival; however none 
of them serves as a useful predictive marker alone. The expression 
levels of individual genes were not highly correlated with one another 
[123]. In contrast, co-expression of doublecortex (DCX) and SPARC 
in glioma cell lines by adenovirus transduction counteracted the 
invasion-promoting effects of SPARC, and collaboratively diminished 
radioresistance of glioma cells, interfered with cell cycle turnover and 
increased irradiation-induced apoptosis [124]. Studies by Rempel and 
colleagues showed that higher SPARC expression in glioma cell lines 
delayed tumor growth in vitro and inversely correlated with tumor 
volume in vivo [125-128]. However, higher-SPARC expressing cells 
also gave rise to more invasive tumors [128] through mechanisms 
that involve modulation of cell proliferation, matrix adhesion and 
upregulation of MMPs and uPA [126,127]. SPARC-expression in 
glioma cell lines as well as exogenous SPARC exhibited survival 
advantage and increased invasiveness through upregulating PI3K-
Akt activity, Focal Adhesion Kinase (FAK) and Integrin-Linked 
Kinase (ILK) [129,130]. In addition, upregulation of urokinase-type 
plasminogen activator (uPa) may also be involved in SPARC-mediated 
Akt activation [131,132]. The tumor suppressor PTEN inhibits SPARC-
induced migration through suppression and differential regulation 
of pAkt and the p38 MAPK-MAPKAPK2-HSP27 signaling pathway 
[131].

A study by Capper et al. [133] reported that SPARC was highly 
expressed in astrocytomas and decreased with tumor progression and 
grade. Increased SPARC expression was associated with decreased 
proliferation. While there is no association between the level of SPARC 
in the tumor cells and patient survival, increased tumor vascular 
SPARC expression is associated with decreased patient survival [133].

Medulloblastoma

SPARC expression exerts a tumor suppressor effect on 
medulloblastoma and induces neuronal differentiation through 
multiple pathways [44,134-137]. SPARC was identified as an effector 
of Src-induced cytoskeleton disruption in medulloblastoma cells, 
which led to decreased migration and invasion [135]. Overexpression 
of SPARC inhibited in vivo angiogenesis through inhibition of MMP-
9-VEGF axis [134]. In addition, the anti-proliferative and cell cycle 
inhibitory effects of SPARC on medulloblastoma were dependent on 
IL6-STAT3-Notch axis which induced neuronal differentiation and 
render these tumors to be more susceptible to chemo- and radiotherapy  
[44,136]. In addition, SPARC treatment exerted a synergistic effect with 
irradiation increasing medulloblastoma cell death in vitro and in vivo. 
SPARC expression prior to irradiation suppressed checkpoints-1,-2 
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and p53 phosphorylation and DNA repair gene XRCC1 as well as 
irradiation induced SOX-4 mediated DNA repair [137].

Neuroblastoma

SPARC has been reported as a tumor suppressor in neuroblastoma 
through inhibition of cell proliferation, invasiveness, and angiogenesis 
in vitro and vivo [15,138-140]. The anti-proliferative effect of SPARC 
was attributed to suppression of AKT activity accompanied by an 
increase in the tumor suppressor protein PTEN both in vitro and in 
vivo models [141]. The anti-angiogenic effect of SPARC was mediated 
by its follistatin-like (FS) domain [15]. In addition, consistent with the 
effect on SPARC on medulloblastoma, overexpression of SPARC in 
neuroblastoma cells sensitized cells to radiation therapy in vitro and 
in vivo [141].

Conclusions
The role of SPARC in different cancers is still controversial due 

to the lack of preclinical models that recapitulate pre-neoplastic and 
neoplastic evolution of a given cancer and the dynamic interactions 
of tumor and stromal compartments. A point that requires further 
investigation in a given cancer is whether stromal SPARC is a reaction 
to restrain or foster tumor growth. The translational significance of 
the inhibitory effect of tumor cell and host SPARC on carcinogenesis, 
progression, and metastasis makes SPARC a viable candidate in 
the adjuvant and/or neoadjuvant settings as a single agent or in 
combination with standard of care radiation or chemotherapies. 
Restoration of SPARC expression can be achieved by demethylating 
agents, administration of synthetic full length protein or tumor 
suppressor domains. The inverse relationship between SPARC tumor 
expression and the increased activation of NFκB and AP-1 target 
molecules represents an additional viable therapeutic target by small 
molecule inhibitors and/or neutralizing antibodies to retard metastatic 
disease. In addition, in cancers with high stromal SPARC, SPARC can 
be exploited as biomarker for targeted stromal therapy and delivery of 
chemo- or immunotherapeutics.
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